If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x-2880=0
a = 1; b = -8; c = -2880;
Δ = b2-4ac
Δ = -82-4·1·(-2880)
Δ = 11584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11584}=\sqrt{64*181}=\sqrt{64}*\sqrt{181}=8\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{181}}{2*1}=\frac{8-8\sqrt{181}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{181}}{2*1}=\frac{8+8\sqrt{181}}{2} $
| (8,r)=56 | | 9a2-30=-3a | | 9a2+-30=3a | | 34/13-88+x=408 | | 34^13-88+x=408 | | 4m²-12m-24=0 | | 24-12y=48 | | 3/x2=15/20 | | 2=1.02x | | 0.3x+0.2=-0.7 | | 5x+4x=20,7 | | 9x-31=5x13 | | 33÷n=11 | | 14a/84=42 | | 5x^2+2x+1=x^2+1 | | 6x–7=2x+33 | | a-5a+8a-2a=0 | | 4y2+7y–2=0 | | 16x3+20x2-2500=0 | | 0=16x3+20x2-2500 | | a+9=12(21) | | 4x-3=x4x−3=x | | 8x+19=7x+25 | | -7=x+4/3 | | -7=x+4/4 | | x*2,20=1000 | | 2.5=5x+60 | | 9^x-12×3^x+27=0 | | 13/8=¾x+1 | | 0x=-112 | | 2-3(x-5)=12 | | F(x)=8x^2+6 |